(11−7−5) Sn−3.5Ag−xZn

@ Cu基体

Jee 韓国のKAIST 
Sn−3.5Ag−xZnとCu
 Zn量増加でC6Sn5がCu5Zn8とAg5Zn8に交替。
 Cu5Zn8は最初はんだ中に出現し、エージングで連続層化。
 ZnはCu3SnとKirkendallボイドを抑制する。







Jee Sn-3Ag-xZn  1、3、7




A Ni基体

Sn-Ag-Zn Jee Sn−3.5Ag−xZnとNi−P












(11−7−6) Sn−0.7Cu−xZn

@ Cu基体

 KAISTのグループ SnCu−Zn
 Sn−0.7Cu−xZn 0.2、0.4、0.8 Ni−P(5)/Au(0.05)








Sn−Cu−Zn Wang ハルビン工科大 Sn−0.7Cu−xZnとCu


Microstructures of the tested bulk alloys (a) Sn-0.7Cu, (b) Sn-0.7Cu-0.2Zn, (c) Sn-0.7Cu-1.0Zn.

Development of interfacial IMC layer of Sn-0.7Cu solder/Cu joint thermally aged at 150 °C (a) as-soldered, (b) aged for 10 days, (c) aged for 20 days.


Development of interfacial IMC layer of Sn-0.7Cu-0.2Zn solder/Cu joint thermally aged at 150 °C (a) as-soldered, (b) aged for 10 days, (c) aged for 20 days


Development of interfacial IMC layer of Sn-0.7Cu-1.0Zn solder/Cu joint thermally aged at 150 °C (a) as-soldered, (b) aged for 10 days, (c) aged for 20 days




A Ni基体

IBM Sn−Cu−Zn Ni
 Sn−0.7Cu−xZn 


 (Cu,Ni)6Sn5と(Cu,Ni,Zn)6Sn5





Sn-0.7CuにはSn−Cu−Ni、Sn−0.7Cu−0.4ZnにはSn−Cu−Ni−Zn




(11−7−7) Sn−9Zn−Cu

Sn−Zn−Cu
 Sn−9Zn−xCu Cu
  Cu5Zn8
  2−6%CuではCu6Sn5とCu5Zn8
  8%以上ではほとんどCu6Sn5だけ

 



Yu
 Sn−9Zn−CuとCu基体
  2<Cu<6 Cu6Sn5とCu5Zn8
  8、10ではCu6Sn5

(11−7−8) Sn−Zn−In


Sn-Zn-In ポーランドのFima
 Sn−8.8Zn−xIn x=0.5、1.0、1.5
Cu5Zn8、Ni5Zn21
 Niの場合Sn−8.8Zn−1.5InではSn−8.8Znと比べ薄く不連続。



 Cu::Cu5Zn8
 Ni::Ni5Zn21




(11−7−9) Sn−Zn−X


Sn-Zn+Cr

IMC of Sn-9Zn/Cu and Sn-9Zn-Cr/Cu interface as-soldered, (a) Sn-9Zn, (b) Sn-9Zn-Cr (5000×, bar = 10 μm).



Top view of the IMC after soldering at 230 °C for (a) Sn-9Zn/Cu and (b) Sn-9Zn-Cr/Cu (20,000×, bar = 2 μm).


The relationship curves between IMC thickness, aging temperature, and aging time (h1/2).

Arrhenius plot of Cu5Zn8 formed by Sn?9Zn/Cu and Sn-9Zn-Cr/Cu.


EDX mappings of ZnCr phase in bulk Sn-9Zn-Cr.

(11−7−10) Sn−Zn−X−Y

 Sn−Ag−Bi−Zn
 SAC+Zn

Nakahara
 Sn−3.5Ag−5Bi−xZn
 Zn添加ではんだ/Cu6Sn5/Cu3Sn/Cuからはんだ/Cu5Zn8/Cu6Sn5/Cu
 接合強度低下と反応層成長が抑制
 Cu5Zn8がCu6sn5成長のバリア層
 Zn1%が適正。





秋田大 SnAgBi+Zn







 大阪大柳川らにはSn−8Zn−3BiにAg、Cu、Pbを添加している。
 基本的組織はSnマトリクスにBiと針状Znが析出した構造となっている。
 Cuとの界面はCu側からCu5Zn8、CuZn6のZn金属間化合物の2層構造である。
 Ag添加の場合、Cu5Zn8、(Ag,Cu)Zn3となる。
 高温保持ではいずれもCu5Zn8の1層となる。
 Ag添加の場合、はんだ中にAgZn3形成。
 Ag添加で界面のIMC成長抑制。
 
 

 
 




Sn-Zn-Cu+Bi+Ni,
 Sn-9Zn-2Cu(SZC)+Ni
 SZCはZnをCu-Zn IMCとしZnの酸化抑制。SZCは215℃で共晶に近い反応。


 Cuとの反応


Kang マイナー添加 IBM Research Report





Kotadia
  SAC Zn Ni-P

SEM images showing the grain sizes in fabricated ingots of different solder alloys: (a) SAC, (b) SAC-0.5Zn, (c) SAC-1Zn, and (d) SAC-1.5Zn


SEM images showing the interfacial microstructures for different systems after reflow on Cu substrate: (a) SAC, (b) SAC-0.5Zn,
(c) SAC-1Zn, and (d) SAC-1.5Zn. The inserts show low magnification optical images where θ represents the solder ball contact angle.



Representative SEM images of Cu6Sn5 and/or (Cu,Zn)6Sn5 from top view for different systems:
(a) SAC, (b) SAC-0.5Zn, (c) SAC-1Zn, and (d) SAC-1.5Zn, after reflow on Cu



Representative SEM images of Cu6Sn5 and/or (Cu,Zn)6Sn5 from top view for different systems:
(a) SAC, (b) SAC-0.5Zn, (c) SAC-1Zn, and (d) SAC-1.5Zn, after 100 h of storage at 150 °C



SEM images showing IMC growth after 1000 h of storage at 150 °C on Cu substrate for different systems:
(a) SAC, (b) SAC-0.5Zn, (c) SAC-1Zn, and (d) SAC-1.5Zn



Plots of mean IMC thickness versus storage time (a) thickness of Cu3Sn IMC layer, (b) thickness of Cu6Sn5
and (Cu,Zn)6Sn5 IMCs layer, (c) total IMC thickness, and (d) thickness of Cu5Zn8 IMC for the SAC-1.5Zn/Cu system,
where the value corresponding to 0 h stands for the as-reflowed samples and the dotted line in figure (c)
indicates the starting point of spalling of Cu6Sn5 IMC particles. All samples stored at 150 °C



Plots of mean IMC thickness versus storage time at 185 °C.


Cumulative probability curves of the thickness of (a) Cu3Sn and (b) Cu6Sn5 or (Cu,Zn)6Sn5 formed on Cu substrate,
stored at 150 °C for 1000 h on the normal coordinates



SEM images showing the interfacial microstructures for different systems on Ni?P substrate: (a) SAC, (b) SAC-0.5Zn,
(c) SAC-1Zn, and (d) SAC-1.5Zn. The inserts show low magnification SEM images where θ represents the solder ball contact angle.



Representative SEM images of (Cu,Ni)6Sn5 and/or (Cu,Ni,Zn)6Sn5 from top view for different systems: (a) SAC,
(b) SAC-0.5Zn, (c)SAC-1Zn, and (d) SAC-1.5Zn (insert shows images of Ni-Cu-Sn-Zn-Au particles), after reflow



Representative SEM images of (Cu,Ni)6Sn5 and/or (Cu,Ni,Zn)6Sn5 from top view for different systems:
(a) SAC, (b) SAC-0.5Zn, (c) SAC-1Zn, and (d) SAC-1.5Zn, after 100 h of storage at 150 °C on Ni?P substrate.

12

SEM images showing IMC growth after 1000 h of storage at 150 °C on Ni-P substrate for different systems:
(a) SAC, (b) SAC-0.5Zn, (c) SAC-1Zn, and (d) SAC-1.5Zn.



Plots of mean IMC thickness versus storage time for different systems: (a) stored at 150 °C and (b) stored at 185 °C


Cumulative probability curves of the thickness of (Cu,Ni)6Sn5 and/or (Cu,Ni,Zn)6Sn5 formed on Ni-P substrate,
stored at 150 °C for 1000 h on the normal coordinates.


Kotadia 英国王立カレッジ Cu−Zn、Cu−Al のマッシブ剥離 はんだとCu
SAC-Zn SAC-2.0Al
SAC387+X X=Zn、Al









BiらCr添加
 Sn-8Zn-3Bi-Cr

Microstructure evolution in Sn-8Zn-3Bi solder joints with Cu substrates during aging at 150 °C for (a) 4, (c) 9,
(e) 25 days and in Sn-8Zn-3Bi-0.3Cr solder joints during aging at 150 °C for (b) 4, (d) 9, (f) 25 days.



Microstructure evolution in Sn-8Zn-3Bi solder joints with Ni substrates during aging at 150 °C for (a) 16, (c) 25 days and
in Sn-8Zn-3Bi-0.3Cr solder joints during aging at 150 °C for (b) 16, (d) 25 days.


 γ-Cu5Zn8 IMCs growth with increased aging time (day1/2):(a) Sn-8Zn-3Bi/Cu interface; (b) Sn-8Zn-3Bi-03Cr/Cu interface.

γ-Ni5Zn21 IMCs growth with increased aging time (day1/2):(a) Sn-8Zn-3Bi/electroplated Ni interface; (b) Sn-8Zn-3Bi-03Cr/electroplated Ni interface.

EDS analysis of Cr contained phase: (a) as-reflowed, (b) after aging for 25 days.


 Sn−Bi−Zn−Sb




Sogo
 0.3mmのSAC305はんだボールをSn−8Zn−3Biで接合。PCB:無電解Ni−P/Au
 



   Ni−Sn−Cu−ZnはNi3Sn4タイプ (Ni,Cu)3(Sn,Zn)4

 Eでは界面から離れてAu−Zn層(AuZn3)形成。温度が高いとAu−Znは
 0.05μmAuでも210℃ではAu−Zn層形成、ただし温度が高いとAu−Znははんだに溶解し(Ni,Cu)3(Sn,Zn)4形成。





 Auが薄いほうが、リフロー温度はやや高めが良い。
 Au−Znがはんだへ溶け込んでNi3Sn4が形成されるようにする。



Islam
各種はんだとCu基体
Cu消費は
  Sn−Zn−Bi>SnAg−Cu>Sn−Zn>Sn−Pb
  γCu5Zn8、βCuZn、薄い不明Cu−Zn


Cheng 清華大



Chou

 250℃等温面



 210℃


 180℃

Perovicら



Huang



戻 る 目 次 次 へ


inserted by FC2 system